

 Navigation

 	
 index

 	
 modules |

 	pysqlite 2.7.0 documentation

Welcome to pysqlite’s documentation!

Contents:

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2008-2015, Gerhard Häring.
 Last updated on Aug 05, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	pysqlite 2.7.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	
 	
 sqlite3	
 A DB-API 2.0 implementation using SQLite 3.x.

 Copyright 2008-2015, Gerhard Häring.
 Last updated on Aug 05, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	pysqlite 2.7.0 documentation

Index

 C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | P
 | R
 | S
 | T

C

 	

 	close() (sqlite3.Connection method)

 	

 	(sqlite3.Cursor method)

 	commit() (sqlite3.Connection method)

 	complete_statement() (in module sqlite3)

 	connect() (in module sqlite3)

 	Connection (class in sqlite3)

 	

 	create_aggregate() (sqlite3.Connection method)

 	create_collation() (sqlite3.Connection method)

 	create_function() (sqlite3.Connection method)

 	cursor() (sqlite3.Connection method)

D

 	

 	description (sqlite3.Cursor attribute)

E

 	

 	enable_callback_tracebacks() (in module sqlite3)

 	enable_load_extension() (sqlite3.Connection method)

 	execute() (sqlite3.Connection method)

 	

 	(sqlite3.Cursor method)

 	

 	executemany() (sqlite3.Connection method)

 	

 	(sqlite3.Cursor method)

 	executescript() (sqlite3.Connection method)

 	

 	(sqlite3.Cursor method)

F

 	

 	fetchall() (sqlite3.Cursor method)

 	fetchmany() (sqlite3.Cursor method)

 	

 	fetchone() (sqlite3.Cursor method)

G

 	

 	get_limit() (sqlite3.Connection method)

I

 	

 	interrupt() (sqlite3.Connection method)

 	isolation_level (sqlite3.Connection attribute)

 	

 	iterdump (sqlite3.Connection attribute)

K

 	

 	keys() (sqlite3.Row method)

L

 	

 	lastrowid (sqlite3.Cursor attribute)

 	

 	load_extension() (sqlite3.Connection method)

P

 	

 	PARSE_COLNAMES (in module sqlite3)

 	PARSE_DECLTYPES (in module sqlite3)

 	

 	
 Python Enhancement Proposals

 	

 	PEP 246

 	PEP 249, [1]

R

 	

 	register_adapter() (in module sqlite3)

 	register_converter() (in module sqlite3)

 	rollback() (sqlite3.Connection method)

 	

 	Row (class in sqlite3)

 	row_factory (sqlite3.Connection attribute)

 	rowcount (sqlite3.Cursor attribute)

S

 	

 	set_authorizer() (sqlite3.Connection method)

 	set_limit() (sqlite3.Connection method)

 	

 	set_progress_handler() (sqlite3.Connection method)

 	sqlite3 (module)

T

 	

 	text_factory (sqlite3.Connection attribute)

 	

 	total_changes (sqlite3.Connection attribute)

 Copyright 2008-2015, Gerhard Häring.
 Last updated on Aug 05, 2015.
 Created using Sphinx 1.3.1.

 _static/up.png

_static/file.png

sqlite3.html

 Navigation

 		
 index

 		
 modules |

 		pysqlite 2.7.0 documentation »

sqlite3 — DB-API 2.0 interface for SQLite databases

SQLite is a C library that provides a lightweight disk-based database that
doesn’t require a separate server process and allows accessing the database
using a nonstandard variant of the SQL query language. Some applications can use
SQLite for internal data storage. It’s also possible to prototype an
application using SQLite and then port the code to a larger database such as
PostgreSQL or Oracle.

pysqlite was written by Gerhard Häring and provides a SQL interface compliant
with the DB-API 2.0 specification described by PEP 249 [https://www.python.org/dev/peps/pep-0249].

To use the module, you must first create a Connection object that
represents the database. Here the data will be stored in the
/tmp/example file:

conn = sqlite3.connect('/tmp/example')

You can also supply the special name :memory: to create a database in RAM.

Once you have a Connection, you can create a Cursor object
and call its execute() method to perform SQL commands:

c = conn.cursor()

Create table
c.execute('''create table stocks
(date text, trans text, symbol text,
 qty real, price real)''')

Insert a row of data
c.execute("""insert into stocks
 values ('2006-01-05','BUY','RHAT',100,35.14)""")

Save (commit) the changes
conn.commit()

We can also close the cursor if we are done with it
c.close()

Usually your SQL operations will need to use values from Python variables. You
shouldn’t assemble your query using Python’s string operations because doing so
is insecure; it makes your program vulnerable to an SQL injection attack.

Instead, use the DB-API’s parameter substitution. Put ? as a placeholder
wherever you want to use a value, and then provide a tuple of values as the
second argument to the cursor’s execute() method. (Other database
modules may use a different placeholder, such as %s or :1.) For
example:

Never do this -- insecure!
symbol = 'IBM'
c.execute("... where symbol = '%s'" % symbol)

Do this instead
t = (symbol,)
c.execute('select * from stocks where symbol=?', t)

Larger example
for t in [('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
 ('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
 ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
]:
 c.execute('insert into stocks values (?,?,?,?,?)', t)

To retrieve data after executing a SELECT statement, you can either treat the
cursor as an iterator, call the cursor’s fetchone() method to
retrieve a single matching row, or call fetchall() to get a list of the
matching rows.

This example uses the iterator form:

>>> c = conn.cursor()
>>> c.execute('select * from stocks order by price')
>>> for row in c:
... print row
...
(u'2006-01-05', u'BUY', u'RHAT', 100, 35.14)
(u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
(u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
(u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
>>>

See also

		http://github.com/ghaering/pysqlite

		The pysqlite web page – sqlite3 is developed externally under the name
“pysqlite”.

		http://www.sqlite.org

		The SQLite web page; the documentation describes the syntax and the
available data types for the supported SQL dialect.

		PEP 249 [https://www.python.org/dev/peps/pep-0249] - Database API Specification 2.0

		PEP written by Marc-André Lemburg.

Module functions and constants

		
sqlite3.PARSE_DECLTYPES

		This constant is meant to be used with the detect_types parameter of the
connect() function.

Setting it makes the sqlite3 module parse the declared type for each
column it returns. It will parse out the first word of the declared type,
i. e. for “integer primary key”, it will parse out “integer”, or for
“number(10)” it will parse out “number”. Then for that column, it will look
into the converters dictionary and use the converter function registered for
that type there.

		
sqlite3.PARSE_COLNAMES

		This constant is meant to be used with the detect_types parameter of the
connect() function.

Setting this makes the SQLite interface parse the column name for each column it
returns. It will look for a string formed [mytype] in there, and then decide
that ‘mytype’ is the type of the column. It will try to find an entry of
‘mytype’ in the converters dictionary and then use the converter function found
there to return the value. The column name found in Cursor.description
is only the first word of the column name, i. e. if you use something like
'as "x [datetime]"' in your SQL, then we will parse out everything until the
first blank for the column name: the column name would simply be “x”.

		
sqlite3.connect(database[, timeout, isolation_level, detect_types, factory])

		Opens a connection to the SQLite database file database. You can use
":memory:" to open a database connection to a database that resides in RAM
instead of on disk.

When a database is accessed by multiple connections, and one of the processes
modifies the database, the SQLite database is locked until that transaction is
committed. The timeout parameter specifies how long the connection should wait
for the lock to go away until raising an exception. The default for the timeout
parameter is 5.0 (five seconds).

For the isolation_level parameter, please see the
Connection.isolation_level property of Connection objects.

SQLite natively supports only the types TEXT, INTEGER, REAL, BLOB and NULL. If
you want to use other types you must add support for them yourself. The
detect_types parameter and the using custom converters registered with the
module-level register_converter() function allow you to easily do that.

detect_types defaults to 0 (i. e. off, no type detection), you can set it to
any combination of PARSE_DECLTYPES and PARSE_COLNAMES to turn
type detection on.

By default, the sqlite3 module uses its Connection class for the
connect call. You can, however, subclass the Connection class and make
connect() use your class instead by providing your class for the factory
parameter.

Consult the section SQLite and Python types of this manual for details.

The sqlite3 module internally uses a statement cache to avoid SQL parsing
overhead. If you want to explicitly set the number of statements that are cached
for the connection, you can set the cached_statements parameter. The currently
implemented default is to cache 100 statements.

		
sqlite3.register_converter(typename, callable)

		Registers a callable to convert a bytestring from the database into a custom
Python type. The callable will be invoked for all database values that are of
the type typename. Confer the parameter detect_types of the connect()
function for how the type detection works. Note that the case of typename and
the name of the type in your query must match!

		
sqlite3.register_adapter(type, callable)

		Registers a callable to convert the custom Python type type into one of
SQLite’s supported types. The callable callable accepts as single parameter
the Python value, and must return a value of the following types: int, long,
float, str (UTF-8 encoded), unicode or buffer.

		
sqlite3.complete_statement(sql)

		Returns True if the string sql contains one or more complete SQL
statements terminated by semicolons. It does not verify that the SQL is
syntactically correct, only that there are no unclosed string literals and the
statement is terminated by a semicolon.

This can be used to build a shell for SQLite, as in the following example:

A minimal SQLite shell for experiments

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect(":memory:")
con.isolation_level = None
cur = con.cursor()

buffer = ""

print "Enter your SQL commands to execute in SQLite."
print "Enter a blank line to exit."

while True:
 line = raw_input()
 if line == "":
 break
 buffer += line
 if sqlite3.complete_statement(buffer):
 try:
 buffer = buffer.strip()
 cur.execute(buffer)

 if buffer.lstrip().upper().startswith("SELECT"):
 print cur.fetchall()
 except sqlite3.Error, e:
 print "An error occurred:", e.args[0]
 buffer = ""

con.close()

		
sqlite3.enable_callback_tracebacks(flag)

		By default you will not get any tracebacks in user-defined functions,
aggregates, converters, authorizer callbacks etc. If you want to debug them, you
can call this function with flag as True. Afterwards, you will get tracebacks
from callbacks on sys.stderr. Use False to disable the feature
again.

Connection Objects

		
class sqlite3.Connection

		A SQLite database connection has the following attributes and methods:

		
Connection.isolation_level

		Get or set the current isolation level. None for autocommit mode or
one of “DEFERRED”, “IMMEDIATE” or “EXCLUSIVE”. See section
Controlling Transactions for a more detailed explanation.

		
Connection.cursor([cursorClass])

		The cursor method accepts a single optional parameter cursorClass. If
supplied, this must be a custom cursor class that extends
sqlite3.Cursor.

		
Connection.commit()

		This method commits the current transaction. If you don’t call this method,
anything you did since the last call to commit() is not visible from from
other database connections. If you wonder why you don’t see the data you’ve
written to the database, please check you didn’t forget to call this method.

		
Connection.rollback()

		This method rolls back any changes to the database since the last call to
commit().

		
Connection.close()

		This closes the database connection. Note that this does not automatically
call commit(). If you just close your database connection without
calling commit() first, your changes will be lost!

		
Connection.execute(sql[, parameters])

		This is a nonstandard shortcut that creates an intermediate cursor object by
calling the cursor method, then calls the cursor’s
execute method with the parameters given.

		
Connection.executemany(sql[, parameters])

		This is a nonstandard shortcut that creates an intermediate cursor object by
calling the cursor method, then calls the cursor’s
executemany method with the parameters given.

		
Connection.executescript(sql_script)

		This is a nonstandard shortcut that creates an intermediate cursor object by
calling the cursor method, then calls the cursor’s
executescript method with the parameters
given.

		
Connection.create_function(name, num_params, func)

		Creates a user-defined function that you can later use from within SQL
statements under the function name name. num_params is the number of
parameters the function accepts, and func is a Python callable that is called
as the SQL function.

The function can return any of the types supported by SQLite: unicode, str, int,
long, float, buffer and None.

Example:

from pysqlite2 import dbapi2 as sqlite3
import md5

def md5sum(t):
 return md5.md5(t).hexdigest()

con = sqlite3.connect(":memory:")
con.create_function("md5", 1, md5sum)
cur = con.cursor()
cur.execute("select md5(?)", ("foo",))
print cur.fetchone()[0]

		
Connection.create_aggregate(name, num_params, aggregate_class)

		Creates a user-defined aggregate function.

The aggregate class must implement a step method, which accepts the number
of parameters num_params, and a finalize method which will return the
final result of the aggregate.

The finalize method can return any of the types supported by SQLite:
unicode, str, int, long, float, buffer and None.

Example:

from pysqlite2 import dbapi2 as sqlite3

class MySum:
 def __init__(self):
 self.count = 0

 def step(self, value):
 self.count += value

 def finalize(self):
 return self.count

con = sqlite3.connect(":memory:")
con.create_aggregate("mysum", 1, MySum)
cur = con.cursor()
cur.execute("create table test(i)")
cur.execute("insert into test(i) values (1)")
cur.execute("insert into test(i) values (2)")
cur.execute("select mysum(i) from test")
print cur.fetchone()[0]

		
Connection.create_collation(name, callable)

		Creates a collation with the specified name and callable. The callable will
be passed two string arguments. It should return -1 if the first is ordered
lower than the second, 0 if they are ordered equal and 1 if the first is ordered
higher than the second. Note that this controls sorting (ORDER BY in SQL) so
your comparisons don’t affect other SQL operations.

Note that the callable will get its parameters as Python bytestrings, which will
normally be encoded in UTF-8.

The following example shows a custom collation that sorts “the wrong way”:

from pysqlite2 import dbapi2 as sqlite3

def collate_reverse(string1, string2):
 return -cmp(string1, string2)

con = sqlite3.connect(":memory:")
con.create_collation("reverse", collate_reverse)

cur = con.cursor()
cur.execute("create table test(x)")
cur.executemany("insert into test(x) values (?)", [("a",), ("b",)])
cur.execute("select x from test order by x collate reverse")
for row in cur:
 print row
con.close()

To remove a collation, call create_collation with None as callable:

con.create_collation("reverse", None)

		
Connection.interrupt()

		You can call this method from a different thread to abort any queries that might
be executing on the connection. The query will then abort and the caller will
get an exception.

		
Connection.set_authorizer(authorizer_callback)

		This routine registers a callback. The callback is invoked for each attempt to
access a column of a table in the database. The callback should return
SQLITE_OK if access is allowed, SQLITE_DENY if the entire SQL
statement should be aborted with an error and SQLITE_IGNORE if the
column should be treated as a NULL value. These constants are available in the
sqlite3 module.

The first argument to the callback signifies what kind of operation is to be
authorized. The second and third argument will be arguments or None
depending on the first argument. The 4th argument is the name of the database
(“main”, “temp”, etc.) if applicable. The 5th argument is the name of the
inner-most trigger or view that is responsible for the access attempt or
None if this access attempt is directly from input SQL code.

Please consult the SQLite documentation about the possible values for the first
argument and the meaning of the second and third argument depending on the first
one. All necessary constants are available in the sqlite3 module.

		
Connection.get_limit(limit_id)

		This routine returns the current value of the limit specified by the
constant limit_id.

Please consult the SQLite documentation about the possible values for the
limit_id parameter.

		
Connection.set_limit(limit_id, new_value)

		This routine sets a new value for the limit specified by the
constant limit_id.

Please consult the SQLite documentation about the possible values for the
limit_id parameter.

		
Connection.set_progress_handler(handler, n)

		This routine registers a callback. The callback is invoked for every n
instructions of the SQLite virtual machine. This is useful if you want to
get called from SQLite during long-running operations, for example to update
a GUI.

If you want to clear any previously installed progress handler, call the
method with None for handler.

		
Connection.enable_load_extension(enabled)

		This routine allows/disallows the SQLite engine to load SQLite extensions
from shared libraries. SQLite extensions can define new functions,
aggregates or whole new virtual table implementations. One well-known
extension is the fulltext-search extension distributed with SQLite.

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect(":memory:")

enable extension loading
con.enable_load_extension(True)

Load the fulltext search extension
con.execute("select load_extension('./fts3.so')")

alternatively you can load the extension using an API call:
con.load_extension("./fts3.so")

disable extension laoding again
con.enable_load_extension(False)

example from SQLite wiki
con.execute("create virtual table recipe using fts3(name, ingredients)")
con.executescript("""
 insert into recipe (name, ingredients) values ('broccoli stew', 'broccoli peppers cheese tomatoes');
 insert into recipe (name, ingredients) values ('pumpkin stew', 'pumpkin onions garlic celery');
 insert into recipe (name, ingredients) values ('broccoli pie', 'broccoli cheese onions flour');
 insert into recipe (name, ingredients) values ('pumpkin pie', 'pumpkin sugar flour butter');
 """)
for row in con.execute("select rowid, name, ingredients from recipe where name match 'pie'"):
 print row

		
Connection.load_extension(path)

		This routine loads a SQLite extension from a shared library. You have to
enable extension loading with enable_load_extension before you can use
this routine.

		
Connection.row_factory

		You can change this attribute to a callable that accepts the cursor and the
original row as a tuple and will return the real result row. This way, you can
implement more advanced ways of returning results, such as returning an object
that can also access columns by name.

Example:

from pysqlite2 import dbapi2 as sqlite3

def dict_factory(cursor, row):
 d = {}
 for idx, col in enumerate(cursor.description):
 d[col[0]] = row[idx]
 return d

con = sqlite3.connect(":memory:")
con.row_factory = dict_factory
cur = con.cursor()
cur.execute("select 1 as a")
print cur.fetchone()["a"]

If returning a tuple doesn’t suffice and you want name-based access to
columns, you should consider setting row_factory to the
highly-optimized sqlite3.Row type. Row provides both
index-based and case-insensitive name-based access to columns with almost no
memory overhead. It will probably be better than your own custom
dictionary-based approach or even a db_row based solution.

		
Connection.text_factory

		Using this attribute you can control what objects are returned for the TEXT
data type. By default, this attribute is set to unicode and the
sqlite3 module will return Unicode objects for TEXT. If you want to
return bytestrings instead, you can set it to str.

For efficiency reasons, there’s also a way to return Unicode objects only for
non-ASCII data, and bytestrings otherwise. To activate it, set this attribute to
sqlite3.OptimizedUnicode.

You can also set it to any other callable that accepts a single bytestring
parameter and returns the resulting object.

See the following example code for illustration:

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()

Create the table
con.execute("create table person(lastname, firstname)")

AUSTRIA = u"\xd6sterreich"

by default, rows are returned as Unicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert row[0] == AUSTRIA

but we can make pysqlite always return bytestrings ...
con.text_factory = str
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) == str
the bytestrings will be encoded in UTF-8, unless you stored garbage in the
database ...
assert row[0] == AUSTRIA.encode("utf-8")

we can also implement a custom text_factory ...
here we implement one that will ignore Unicode characters that cannot be
decoded from UTF-8
con.text_factory = lambda x: unicode(x, "utf-8", "ignore")
cur.execute("select ?", ("this is latin1 and would normally create errors" + u"\xe4\xf6\xfc".encode("latin1"),))
row = cur.fetchone()
assert type(row[0]) == unicode

pysqlite offers a builtin optimized text_factory that will return bytestring
objects, if the data is in ASCII only, and otherwise return unicode objects
con.text_factory = sqlite3.OptimizedUnicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) == unicode

cur.execute("select ?", ("Germany",))
row = cur.fetchone()
assert type(row[0]) == str

		
Connection.total_changes

		Returns the total number of database rows that have been modified, inserted, or
deleted since the database connection was opened.

		
Connection.iterdump

		Returns an iterator to dump the database in an SQL text format. Useful when
saving an in-memory database for later restoration. This function provides
the same capabilities as the .dump command in the sqlite3
shell.

Example:

Convert file existing_db.db to SQL dump file dump.sql
import sqlite3, os

con = sqlite3.connect('existing_db.db')
full_dump = os.linesep.join([line for line in con.iterdump()])
f = open('dump.sql', 'w')
f.writelines(full_dump)
f.close()

Cursor Objects

A Cursor instance has the following attributes and methods:

A SQLite database cursor has the following attributes and methods:

		
Cursor.close()

		Close the cursor now (rather than whenever __del__ is called).

The cursor will be unusable from this point forward; an Error (or subclass)
exception will be raised if any operation is attempted with the cursor.

		
Cursor.execute(sql[, parameters])

		Executes an SQL statement. The SQL statement may be parametrized (i. e.
placeholders instead of SQL literals). The sqlite3 module supports two
kinds of placeholders: question marks (qmark style) and named placeholders
(named style).

This example shows how to use parameters with qmark style:

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect("mydb")

cur = con.cursor()

who = "Yeltsin"
age = 72

cur.execute("select name_last, age from people where name_last=? and age=?", (who, age))
print cur.fetchone()

This example shows how to use the named style:

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect("mydb")

cur = con.cursor()

who = "Yeltsin"
age = 72

cur.execute("select name_last, age from people where name_last=:who and age=:age",
 {"who": who, "age": age})
print cur.fetchone()

execute() will only execute a single SQL statement. If you try to execute
more than one statement with it, it will raise a Warning. Use
executescript() if you want to execute multiple SQL statements with one
call.

		
Cursor.executemany(sql, seq_of_parameters)

		Executes an SQL command against all parameter sequences or mappings found in
the sequence sql. The sqlite3 module also allows using an
iterator yielding parameters instead of a sequence.

from pysqlite2 import dbapi2 as sqlite3

class IterChars:
 def __init__(self):
 self.count = ord('a')

 def __iter__(self):
 return self

 def next(self):
 if self.count > ord('z'):
 raise StopIteration
 self.count += 1
 return (chr(self.count - 1),) # this is a 1-tuple

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

theIter = IterChars()
cur.executemany("insert into characters(c) values (?)", theIter)

cur.execute("select c from characters")
print cur.fetchall()

Here’s a shorter example using a generator:

from pysqlite2 import dbapi2 as sqlite3

def char_generator():
 import string
 for c in string.letters[:26]:
 yield (c,)

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

cur.executemany("insert into characters(c) values (?)", char_generator())

cur.execute("select c from characters")
print cur.fetchall()

		
Cursor.executescript(sql_script)

		This is a nonstandard convenience method for executing multiple SQL statements
at once. It issues a COMMIT statement first, then executes the SQL script it
gets as a parameter.

sql_script can be a bytestring or a Unicode string.

Example:

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.executescript("""
 create table person(
 firstname,
 lastname,
 age
);

 create table book(
 title,
 author,
 published
);

 insert into book(title, author, published)
 values (
 'Dirk Gently''s Holistic Detective Agency',
 'Douglas Adams',
 1987
);
 """)

		
Cursor.fetchone()

		Fetches the next row of a query result set, returning a single sequence,
or None when no more data is available.

		
Cursor.fetchmany([size=cursor.arraysize])

		Fetches the next set of rows of a query result, returning a list. An empty
list is returned when no more rows are available.

The number of rows to fetch per call is specified by the size parameter.
If it is not given, the cursor’s arraysize determines the number of rows
to be fetched. The method should try to fetch as many rows as indicated by
the size parameter. If this is not possible due to the specified number of
rows not being available, fewer rows may be returned.

Note there are performance considerations involved with the size parameter.
For optimal performance, it is usually best to use the arraysize attribute.
If the size parameter is used, then it is best for it to retain the same
value from one fetchmany() call to the next.

		
Cursor.fetchall()

		Fetches all (remaining) rows of a query result, returning a list. Note that
the cursor’s arraysize attribute can affect the performance of this operation.
An empty list is returned when no rows are available.

		
Cursor.rowcount

		Although the Cursor class of the sqlite3 module implements this
attribute, the database engine’s own support for the determination of “rows
affected”/”rows selected” is quirky.

For DELETE statements, SQLite reports rowcount as 0 if you make a
DELETE FROM table without any condition.

For executemany() statements, the number of modifications are summed up
into rowcount.

As required by the Python DB API Spec, the rowcount attribute “is -1 in
case no executeXX() has been performed on the cursor or the rowcount of the
last operation is not determinable by the interface”.

This includes SELECT statements because we cannot determine the number of
rows a query produced until all rows were fetched.

		
Cursor.lastrowid

		This read-only attribute provides the rowid of the last modified row. It is
only set if you issued a INSERT statement using the execute()
method. For operations other than INSERT or when executemany() is
called, lastrowid is set to None.

		
Cursor.description

		This read-only attribute provides the column names of the last query. To
remain compatible with the Python DB API, it returns a 7-tuple for each
column where the last six items of each tuple are None.

It is set for SELECT statements without any matching rows as well.

Row Objects

		
class sqlite3.Row

		A Row instance serves as a highly optimized
row_factory for Connection objects.
It tries to mimic a tuple in most of its features.

It supports mapping access by column name and index, iteration,
representation, equality testing and len().

If two Row objects have exactly the same columns and their
members are equal, they compare equal.

Changed in version 2.6: Added iteration and equality (hashability).

		
keys()

		This method returns a tuple of column names. Immediately after a query,
it is the first member of each tuple in Cursor.description.

New in version 2.6.

Let’s assume we initialize a table as in the example given above:

conn = sqlite3.connect(":memory:")
c = conn.cursor()
c.execute('''create table stocks
(date text, trans text, symbol text,
 qty real, price real)''')
c.execute("""insert into stocks
 values ('2006-01-05','BUY','RHAT',100,35.14)""")
conn.commit()
c.close()

Now we plug Row in:

>>> conn.row_factory = sqlite3.Row
>>> c = conn.cursor()
>>> c.execute('select * from stocks')
<sqlite3.Cursor object at 0x7f4e7dd8fa80>
>>> r = c.fetchone()
>>> type(r)
<type 'sqlite3.Row'>
>>> r
(u'2006-01-05', u'BUY', u'RHAT', 100.0, 35.14)
>>> len(r)
5
>>> r[2]
u'RHAT'
>>> r.keys()
['date', 'trans', 'symbol', 'qty', 'price']
>>> r['qty']
100.0
>>> for member in r: print member
...
2006-01-05
BUY
RHAT
100.0
35.14

SQLite and Python types

Introduction

SQLite natively supports the following types: NULL, INTEGER,
REAL, TEXT, BLOB.

The following Python types can thus be sent to SQLite without any problem:

		Python type
		SQLite type

		None
		NULL

		int
		INTEGER

		long
		INTEGER

		float
		REAL

		str (UTF8-encoded)
		TEXT

		unicode
		TEXT

		buffer
		BLOB

This is how SQLite types are converted to Python types by default:

		SQLite type
		Python type

		NULL
		None

		INTEGER
		int or long,
depending on size

		REAL
		float

		TEXT
		depends on text_factory,
unicode by default

		BLOB
		buffer

The type system of the sqlite3 module is extensible in two ways: you can
store additional Python types in a SQLite database via object adaptation, and
you can let the sqlite3 module convert SQLite types to different Python
types via converters.

Using adapters to store additional Python types in SQLite databases

As described before, SQLite supports only a limited set of types natively. To
use other Python types with SQLite, you must adapt them to one of the
sqlite3 module’s supported types for SQLite: one of NoneType, int, long, float,
str, unicode, buffer.

The sqlite3 module uses Python object adaptation, as described in
PEP 246 [https://www.python.org/dev/peps/pep-0246] for this. The protocol to use is PrepareProtocol.

There are two ways to enable the sqlite3 module to adapt a custom Python
type to one of the supported ones.

Letting your object adapt itself

This is a good approach if you write the class yourself. Let’s suppose you have
a class like this:

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

Now you want to store the point in a single SQLite column. First you’ll have to
choose one of the supported types first to be used for representing the point.
Let’s just use str and separate the coordinates using a semicolon. Then you need
to give your class a method __conform__(self, protocol) which must return
the converted value. The parameter protocol will be PrepareProtocol.

from pysqlite2 import dbapi2 as sqlite3

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

 def __conform__(self, protocol):
 if protocol is sqlite3.PrepareProtocol:
 return "%f;%f" % (self.x, self.y)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print cur.fetchone()[0]

Registering an adapter callable

The other possibility is to create a function that converts the type to the
string representation and register the function with register_adapter().

Note

The type/class to adapt must be a new-style class, i. e. it must have
object as one of its bases.

from pysqlite2 import dbapi2 as sqlite3

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

def adapt_point(point):
 return "%f;%f" % (point.x, point.y)

sqlite3.register_adapter(Point, adapt_point)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print cur.fetchone()[0]

The sqlite3 module has two default adapters for Python’s built-in
datetime.date and datetime.datetime types. Now let’s suppose
we want to store datetime.datetime objects not in ISO representation,
but as a Unix timestamp.

from pysqlite2 import dbapi2 as sqlite3
import datetime, time

def adapt_datetime(ts):
 return time.mktime(ts.timetuple())

sqlite3.register_adapter(datetime.datetime, adapt_datetime)

con = sqlite3.connect(":memory:")
cur = con.cursor()

now = datetime.datetime.now()
cur.execute("select ?", (now,))
print cur.fetchone()[0]

Converting SQLite values to custom Python types

Writing an adapter lets you send custom Python types to SQLite. But to make it
really useful we need to make the Python to SQLite to Python roundtrip work.

Enter converters.

Let’s go back to the Point class. We stored the x and y coordinates
separated via semicolons as strings in SQLite.

First, we’ll define a converter function that accepts the string as a parameter
and constructs a Point object from it.

Note

Converter functions always get called with a string, no matter under which
data type you sent the value to SQLite.

def convert_point(s):
 x, y = map(float, s.split(";"))
 return Point(x, y)

Now you need to make the sqlite3 module know that what you select from
the database is actually a point. There are two ways of doing this:

		Implicitly via the declared type

		Explicitly via the column name

Both ways are described in section Module functions and constants, in the entries
for the constants PARSE_DECLTYPES and PARSE_COLNAMES.

The following example illustrates both approaches.

from pysqlite2 import dbapi2 as sqlite3

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

 def __repr__(self):
 return "(%f;%f)" % (self.x, self.y)

def adapt_point(point):
 return "%f;%f" % (point.x, point.y)

def convert_point(s):
 x, y = map(float, s.split(";"))
 return Point(x, y)

Register the adapter
sqlite3.register_adapter(Point, adapt_point)

Register the converter
sqlite3.register_converter("point", convert_point)

p = Point(4.0, -3.2)

#########################
1) Using declared types
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)
cur = con.cursor()
cur.execute("create table test(p point)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute("select p from test")
print "with declared types:", cur.fetchone()[0]
cur.close()
con.close()

#######################
1) Using column names
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(p)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute('select p as "p [point]" from test')
print "with column names:", cur.fetchone()[0]
cur.close()
con.close()

Default adapters and converters

There are default adapters for the date and datetime types in the datetime
module. They will be sent as ISO dates/ISO timestamps to SQLite.

The default converters are registered under the name “date” for
datetime.date and under the name “timestamp” for
datetime.datetime.

This way, you can use date/timestamps from Python without any additional
fiddling in most cases. The format of the adapters is also compatible with the
experimental SQLite date/time functions.

The following example demonstrates this.

from pysqlite2 import dbapi2 as sqlite3
import datetime

con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(d date, ts timestamp)")

today = datetime.date.today()
now = datetime.datetime.now()

cur.execute("insert into test(d, ts) values (?, ?)", (today, now))
cur.execute("select d, ts from test")
row = cur.fetchone()
print today, "=>", row[0], type(row[0])
print now, "=>", row[1], type(row[1])

cur.execute('select current_date as "d [date]", current_timestamp as "ts [timestamp]"')
row = cur.fetchone()
print "current_date", row[0], type(row[0])
print "current_timestamp", row[1], type(row[1])

Controlling Transactions

By default, the sqlite3 module opens transactions implicitly before a
Data Modification Language (DML) statement (i.e.
INSERT/UPDATE/DELETE/REPLACE), and commits transactions
implicitly before a non-DML, non-query statement (i. e.
anything other than SELECT or the aforementioned).

So if you are within a transaction and issue a command like CREATE TABLE
..., VACUUM, PRAGMA, the sqlite3 module will commit implicitly
before executing that command. There are two reasons for doing that. The first
is that some of these commands don’t work within transactions. The other reason
is that pysqlite needs to keep track of the transaction state (if a transaction
is active or not).

You can control which kind of BEGIN statements sqlite3 implicitly executes
(or none at all) via the isolation_level parameter to the connect()
call, or via the isolation_level property of connections.

If you want autocommit mode, then set isolation_level to None.

Otherwise leave it at its default, which will result in a plain “BEGIN”
statement, or set it to one of SQLite’s supported isolation levels: “DEFERRED”,
“IMMEDIATE” or “EXCLUSIVE”.

Using sqlite3 efficiently

Using shortcut methods

Using the nonstandard execute(), executemany() and
executescript() methods of the Connection object, your code can
be written more concisely because you don’t have to create the (often
superfluous) Cursor objects explicitly. Instead, the Cursor
objects are created implicitly and these shortcut methods return the cursor
objects. This way, you can execute a SELECT statement and iterate over it
directly using only a single call on the Connection object.

from pysqlite2 import dbapi2 as sqlite3

persons = [
 ("Hugo", "Boss"),
 ("Calvin", "Klein")
]

con = sqlite3.connect(":memory:")

Create the table
con.execute("create table person(firstname, lastname)")

Fill the table
con.executemany("insert into person(firstname, lastname) values (?, ?)", persons)

Print the table contents
for row in con.execute("select firstname, lastname from person"):
 print row

Using a dummy WHERE clause to not let SQLite take the shortcut table deletes.
print "I just deleted", con.execute("delete from person where 1=1").rowcount, "rows"

Accessing columns by name instead of by index

One useful feature of the sqlite3 module is the built-in
sqlite3.Row class designed to be used as a row factory.

Rows wrapped with this class can be accessed both by index (like tuples) and
case-insensitively by name:

from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect("mydb")
con.row_factory = sqlite3.Row

cur = con.cursor()
cur.execute("select name_last, age from people")
for row in cur:
 assert row[0] == row["name_last"]
 assert row["name_last"] == row["nAmE_lAsT"]
 assert row[1] == row["age"]
 assert row[1] == row["AgE"]

Using the connection as a context manager

With Python 2.5 or higher, connection objects can be used as context managers
that automatically commit or rollback transactions. In the event of an
exception, the transaction is rolled back; otherwise, the transaction is
committed:

from __future__ import with_statement
from pysqlite2 import dbapi2 as sqlite3

con = sqlite3.connect(":memory:")
con.execute("create table person (id integer primary key, firstname varchar unique)")

Successful, con.commit() is called automatically afterwards
with con:
 con.execute("insert into person(firstname) values (?)", ("Joe",))

con.rollback() is called after the with block finishes with an exception, the
exception is still raised and must be catched
try:
 with con:
 con.execute("insert into person(firstname) values (?)", ("Joe",))
except sqlite3.IntegrityError:
 print "couldn't add Joe twice"

Common issues

Multithreading

Older SQLite versions had issues with sharing connections between threads.
That’s why the Python module disallows sharing connections and cursors between
threads. If you still try to do so, you will get an exception at runtime.

The only exception is calling the interrupt() method, which
only makes sense to call from a different thread.

 © Copyright 2008-2015, Gerhard Häring.
 Last updated on Aug 05, 2015.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		
 modules |

 		pysqlite 2.7.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2015, Gerhard Häring.
 Last updated on Aug 05, 2015.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

